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Abstract

The rise of popularity in virtual meetings have left Deaf and hard of hearing people
out of the conversation. An existing solution to join online meetings is to hire an
in-person translator; however, translators require time and money. We developed
an alternative no-cost solution. We conducted user research and gathered feedback
from over 120 American Sign Language (ASL) users. Based on our findings, we
designed and built the Sign Language Assistant for Meetings (SLAM) application.
The application is used as a real-time, ASL to English text translator. Users can
download SLAM as an extension to their Zoom meetings. Users sign ASL into the
built-in computer camera and that information is sent to the backend. The backend
utilizes the Sign pose-based transformer for word-level sign language recognition
(SPOTER) machine learning model [1] to detect key points on the user’s hands,
face, and body. We trained the model to recognize over 1000 signs and output the
corresponding English translation with the highest statistical probability. The final
translation is displayed as captions for the other members of the virtual meeting,
integrated into the Zoom client. For future work, SLAM can be expanded to trans-
late spoken English to ASL. One possible idea is to include a virtual avatar in the
virtual meeting which will sign ASL to the Deaf and hard of hearing user as English
is being spoken in real-time. This will complete the two-way communication that is
typically done by an in-person ASL interpreter.
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Chapter 1

Discovering the Needs of
American Sign Language (ASL)
Speakers and Overview of Current
ASL Recognition Technologies

1 USA Deaf Community and Their Needs

According to the World Health Organization, the hearing threshold for normal hear-
ing is within the 20 dB range in both ears [2]. People who are hard of hearing are
outside of that 20 dB range. They can still hear, but it comes with difficulty and
they typically need assistive devices such as live captioning or hearing aids. People
who are deaf cannot hear at all or have a very small threshold for hearing. They
rely on sign language to communicate and the US has a specific language called
American Sign Language (ASL). It is a language that utilizes signs created by the
hands, face, and body.

In the US, there are approximately 37 million deaf and hard of hearing people
[3], which accounts for 11 percent of the population in the 2020’s. There are approx-
imately 1 million ASL users [4], which is not mutually exclusive with the hearing
population. Many deaf people have family and friends who learn ASL to communi-
cate with their loved ones. This has led ASL to be in the top 10 most commonly
used languages in the US [5]. A vibrant deaf community in schools, work places,
and society at large creates an inclusive environment that is beneficial to all.

People who are Deaf or hard of hearing have several obstacles in their day to day
life, such as inclusion in schools or workplaces. Over the pandemic, virtual meeting
platforms like Zoom and Google Meets rose in popularity due to their convenience
and ability to keep schools and workplaces running. However, these platforms are
not designed to be inclusive to the deaf or hard of hearing community. The reliance
on spoken mode of communication makes it difficult for Deaf people to join online
meetings without an in-person translator. Hiring an ASL interpreter costs time and
money. Therefore, the Deaf and hard of hearing community is left out of these
meetings, which further perpetuates the obstacles they endure.



2 Overview of ASL Recognition Machine Learn-
ing Models

In ASL, we use 5 parameters to describe how a sign behaves: 1) hand-shape, 2)
location, 3) movement, 4) palm orientation, and 5) facial expression or non-manual
signals (Figure 1.1). As a result, an accurate recognition model needs to take all 5
parameters into consideration. In this section, we discuss works related to American
Sign Language recognition. We divide the works into two types: static gesture
recognition (SGR), and real-time action recognition (RTAR). Table 1.1 summarizes
these models.

Handshape

Location

Movement
Palm orien-
tation
BALANCE MAYBE
Nonmanual
signals
LATE NOT-YET

Figure 1.1: The five parameters of ASL. Image credit: [6], Figure 8.

2.1 Static Gesture Recognition for a Single Image

The first category of ASL recognition work can recognize the user’s static gestures.
Specifically, this kind of tool is used for recognition of static hand gestures. Saha et
al. [7] proposed a novel image processing sign language detection framework that
employs the MAdaline network for classification purposes. The main focus of this
framework is on two aspects. This model introduced an advanced feature set with
seven distinct features. In addition, the model eliminated the process of cropping out
unnecessary background images, which reduced system complexity. This framework



Model Year Type  Remarks

MAdaline 2016 SGR It can recognize 26 English alphabet letters. Accuracy
is more than 93%.

H3DF 2013 SGR It can encode the 3D shape information from depth
maps. It can recognize digits from 0 to 9 and letters
from a to z without j and z. Accuracy is more than
91%.

I3D 2017 RTAR Reaching 80.9% accuracy on HMDB-51 dataset and
98.0% accuracy on UCF-101 dataset.

SPOTER 2022 RTAR Outperform the prior state of the art with a relative
improvement of about 4%.

Table 1.1: Summary of ASL recognition machine learning models

has been implemented to recognize the 26 English alphabet letters from A’ to 'Z’
of standardized ASL and the results had an accuracy of more than 93%.

In addition to the MAdaline Neural Network, Zhang et al. [8] used the Histogram
of 3D Facets (H3DF) to explicitly encode the 3D shape information from depth maps.
This H3DF descriptor, which is based on the depth map, offered two advantages
over previous 2D image descriptors. In contrast to previous 2D global descriptors,
such as the Histogram of Oriented Gradients (HOG), it applied a compact global
representation to characterize a depth image. Two types of experiments have been
conducted to test the H3DF descriptor. Two public data sets, the NTU Hand
Digits data set and the ASL Finger Spelling data set, containing depth maps of
hand gestures. The results showed that the H3DF descriptor can recognize the
hand gesture with a mean accuracy of more than 91%.

2.2 Real-Time Action Recognition for Video Inputs

In comparison to detecting static gestures, recognizing movements with a temporal
component is more challenging. In this part, we look into the research that aims to
recognize real-time actions and translate them into spoken English or text.

Carreira et al. [9] proposed a novel Two-Stream Inflated 3D ConvNet (I3D)
that is based on 2D ConvNet inflation. This model allowed for the learning of
spatial-temporal feature extractors from video while utilizing successful ImageNet
architectural designs, including their parameters. The authors demonstrated that
I3D models significantly outperformed the state-of-the-art in action categorization
after pre-training on kinetics, reaching 80.9% accuracy on HMDB-51 data set and
98.0% accuracy on UCF-101 data set. Li et al. [10] fine-tuned the I3D model
based on ImageNet and Kinetics and tested it using the Word-Level American Sign
Language (WLASL) video data set, which contains 2000 words performed by over
100 signers. The results showed the tuned I3D model achieved better performance
compared to the other image-appearance based models.

Bohacek et al. [1] subsequently presented the SPOTER, system, which utilized
a pose-based transformer model for word-level ASL recognition. The recognition
was based on the estimation of the human body’s pose in the form of 2D landmark
locations. The authors presented a robust pose normalization scheme that consid-



ered the signing space and processed hand poses independently of the body location.
Additionally, they introduced several body pose augmentations that improved the
accuracy even further, including a novel sequential joint rotation augmentation.
They validated their system on two data sets, WLASL100 and LSA64. The results
showed that the SPOTER model outperformed the prior state-of-the-art models
with a relative improvement of about 4%.

3 Current ASL Technologies and Novelty of SLAM

To enable us to design a novel application, we conducted an analysis of the current
assistive technologies available to ASL users. Based on these findings, we designed
our app to target the biggest pitfalls of the current technologies.

The most prominent use cases for SLAM include online meetings for school, work,
job interviews, and connecting with friends and family. Since it is an extension to
the Zoom marketplace, SLAM is only compatible with that platform. However, for
future work, it can be expanded to any platform such as Google Meets, Microsoft
Teams, or Skype. SLAM can also be used on mobile devices. This enables Deaf or
hard of hearing users to communicate with people who don’t know ASL.

Current ASL apps on the market include Hand Talk and ASL Translator. Both
apps translate English text to ASL and use an avatar to sign ASL to the user. They
are stand-alone assistive technologies and don’t integrate into a larger platform.
These translator apps don’t address the other side of the communication, which
is translating ASL to English text. Jeenie is another app that enables users to
hire an in-person translator to join their online meetings. However, as previously
addressed, this requires time and money. Additionally, if the meeting is personal or
has sensitive information, an in-person interpreter may not be desirable.

There are many live captioning services and apps that capture voice and translate
sound into written English. Zoom and Google have these technologies built into their
platforms. However, these meeting software platforms don’t take ASL into account.
Therefore, this diminishes the effectiveness of these live captioning services for ASL
speakers because the captions are in English rather than in ASL. There are currently
no technologies that automatically translate ASL to English text that are compatible
with online meeting platforms. After market analysis, we found that there are many
pitfalls to the current technologies. SLAM would be a novel solution that aims to
address some of these pitfalls.

4 Human-centered Design and ASL Community
Findings

We followed the Human-Centered Design (HCD) techniques in our approach to
build the prototype application that translates American Sign Language (ASL) into
English. HCD is a set of principles centered on understanding the potential user
prior to designing a solution. In the context of building a software application, HCD
is known as User-Centered Design (UCD) [11]. The HCD principles are used in a
variety of disciplines from designing software applications in healthcare [12], [13] to
consumer products [14]. The universal approach of HCD is to design for the user
with the user in mind, using a collection of social-behavioral methodologies. The



goal of HCD is to gain a deep understanding of the target user and to create a
product that solves an existing need. We don’t directly ask the users what kind of
application they would want. Instead, we observe the users in their environment and
come up with possible solutions to their existing challenges. The specific challenge
we identified is the inability of people who rely on ASL to participate in virtual
meetings with people who rely on spoken language. After establishing the challenge,
we prototyped our solution as a web application. Then, we tested our solution with
users and iterated the design based on user feedback.

The specific methods of Human-Computer Interaction we employed include con-
textual inquiry [15], rapid prototyping, iterative design, and user testing. In each
step of the design process we focus on the target audience. Our initial target group
is the Deaf, hard-of-hearing, and people who are learning ASL, between the ages of
20 and 30, who reside in the United States.

4.1 Observation of the ASL Community and its Influence
on SLAM

The iterative steps of the Human-centered design approach are 1) observe, 2) design,
3) test, and 4) iterate, shown in Figure 1.2. In the first step, we observed the current
habits of users by interviewing them and asking them open-ended questions about
the way in which they communicate in ASL. In the second step, we described our
target audience and designed the application. In the third step, we tested our
prototype with users. Finally, we implemented the feedback we received into the
next iteration of the design.

1. Observe ASL 2. Design app
users to find pain | b usinginsights
points and analysis

4. Implement
feedback into the §
next design

3. Test prototype
with users and
collect input

Figure 1.2: Human-centered design approach.

As part of the observation step in the HCD approach, we conducted interviews
in order to better understand the target audience. We interviewed two people over
the phone and email: one person working at the NorCal Services for the Deaf and
one person working at the Deaf Community Services of San Diego. The interview
questions focused on the current usage of technology as an aid in communication.
Conversations over the phone lasted approximately 30 minutes. Sample questions
included specific questions about current translation applications and general ex-
ploratory questions about the Deaf culture and community. An example interview
question is: ”Are you currently using a translator app?”. The interview partici-
pants gave us a glimpse about how users currently communicate with hearing and
non-hearing people and their existing challenges.



4.2 Online Surveys with Members of the ASL Berkeley Com-
munity

In addition to interviewing members of the ASL Berkeley community, we conducted
two online surveys. We created a short online survey with 10 questions to find out
more about user preferences of communications and their choices when it comes to
ASL applications. We first sent the survey to the ASL student club at the University
of California, Berkeley. We received 6 responses. Then, we iterated on the first
survey and sent the second survey to the wider University of California community,
including current students, staff, and alumni. We received 159 responses to the
second survey, out of which 123 people responded that they know ASL in some
capacity.

From the survey responses, we analyzed the quantitative and qualitative data to
draw user insights. For example, we found that the majority of survey participants
(around 88%) rate themselves as ASL beginners. Out of 10 questions, there were
7 quantitative questions with multiple-choice answers, and 3 questions were short-
answer qualitative questions. The quantitative questions included questions such
as: "In the past 90 days, how many times have you used American Sign Language
(ASL)?”. We found that less than a fifth of respondents use ASL on a regular basis
(daily or weekly) and over 80% use it infrequently. Figure 1.3 shows a plot of the
responses about frequency of ASL use in the past 90 days. Qualitative questions
were of the form: ”"In the past 90 days, describe a situation in which you wished
you had a technology that could help you communicate that doesn’t exist yet.”.

ASL Usage in the past 90 days

Frequent

Infrequent

Haven't used

=

20 40 60

# of responses

Figure 1.3: Comparing frequent and infrequent ASL use in the past 90 days from
120 survey responses

Based on the survey responses, most signers use ASL in face-to-face commu-
nications: around 65% use ASL in person and around 27% use ASL over video.
A minority of survey participants currently use an application that relies on ASL
(around 6%). Those who use an ASL-based app, use a dictionary app. Based on the
responses from people who use an ASL-based app, we learned that users care about
two parameters: the ease of use and speed. We asked if people would be interested in
using an app that allows anyone to communicate in American Sign Language during



virtual meetings and the majority (around 84%) expressed interest. Therefore, we
hypothesized that there’s a need for a real-time ASL translator application and a
similar app doesn’t already exist on the market. Table 1.2 shows the summary of
user survey results for quantitative questions. All questions were asked about ASL
use in the past 90 days.

Question Question topic Result

1 ASL beginner level of knowledge 107 (88%)
2 Use ASL frequently 14 (17%)
3 Use ASL in face-to-face communications 61 (65%)
4 Have used an ASL app 4 (6%)

8 Interested in using ASL app for communications 97 (84%)
9 Interested in using ASL app for computer assistance 78 (70%)

Table 1.2: Summary of quantitative results (number of positive responses and
percent) from the ASL user survey from 123 participants from the University of
California student, staff, and alumni network

The qualitative survey responses revealed the main challenge of building an ASL-
to-English translator: ASL is more than just signs. There are 5 main ASL compo-
nents that play a crucial role in how the language works: gestures, body posture,
facial expression, context, and repetition. All the components play a role and carry
meaning. For instance, two identical gestures mean different things depending on
context. Figure 1.4 shows two different signs made with the same gesture. Addi-
tionally, some signs vary only slightly in the hand orientation and can have different
meanings, such as "dance” and "read” [10]. Moreover, ASL has dialects and slang,
so sign meaning may differ depending on the person’s location in the United States.

)

il

Figure 1.4: The ASL words “wish” (top) and “hungry” (bottom) are made with
the same gesture. Image credit: [10], Figure 2 (a).



4.3 Creation of Persona and Customer Realization

After analyzing the user interviews and survey results, we developed a user persona
based on the insights about our target audience. A user persona is an archetype
of potential users [16], a tool used by user interface and product designers. We
employed this tool to have a concrete representation of the target audience for whom
we were designing. We combined the insights we drew from interviews and user
surveys to explicitly describe our target user. This includes stating their motivations,
worries, and personality characteristics. Developing a user persona is useful during
the design and development phases. In order to decide whether to include a feature,
we relied on the concrete user persona. If the feature is irrelevant to the target
persona, it was not included in the application prototype. Appendix A contains the
user persona document.

4.4 Storyboard for Detailed Application Scenario

In the final part of the design stage, we created a scenario in which the application
would be used by the representative user persona. Based on our understanding of
the target audience, we posited that the application we develop would be used in
school, when a team works together on a project. Storyboards are used in interface
design to create a narrative that gives application context. Originally a tool in
the film industry, storyboarding is frequently used by application designers [17].
Storyboarding relies on simple sketches that show the main idea of the application
use. We created the application storyboard that shows one potential use-case of the
application. Figure 1.5 shows the application storyboard.

Figure 1.5: Application storyboard



Chapter 2

Designing SLAM: Sign Language
Assistant for Meetings

5 SLAM Application Structure and Implementa-
tion of Machine Learning Models

5.1 SLAM Prototype as a Minimal Viable Product

The application we developed is called SLAM: Sign Language Assistant for Meetings.
We chose a short and memorable name for the application that is descriptive of its
function. The logo of the application spells SLAM using ASL finger spelling. Finger
spelling is a way to represent distinct letters of the alphabet, based on the word
written form. Finger spelling is used to spell proper names or words that have no
official signs [18]. We chose purple as the main color of the application and its logo
to be consistent with other popular communication applications such as Discord and
Twitch. Figure 2.1 shows the SLAM application logo.

Figure 2.1: SLAM application logo and main color

The Minimal Viable Product (MVP) is a product with a small set of features
that allows end-to-end testing with users [19]. The MVP we developed using the
HCD approach is a web application, installed as an extension to the Zoom Video
Communication client (Zoom) [20], [21]. The app prototype can be found in an
online Zoom marketplace. We chose Zoom as the platform to deploy the prototype,
due to Zoom popularity in the work and school settings [22]. Additionally, the Zoom
Developer platform contains a robust set of Application Programming Interfaces
(APIs), which is a standard way of developing a web application [23]. The Zoom
Marketplace allows developers to deploy the application and test it with users, using
their own machines.

10



5.2 SLAM App Infrastructure and Technology Stack

The SLAM application has three main components: the user interface (the frontend),
the application logic (the backend), and the machine learning model. Figure 2.2
shows the main application components and a step-by-step application workflow
that happens continuously as the application runs.

( D
User Interface

Olivia makes a "Hello" Ca.m?elra tfaptu res SLAM sends captu'red
gesture in ASL. Olivia's video al-s a data to the machine
series of key-points. learning model.

R . Zoom
SLAM is translating...

Everyone in the Zoom | |[SLAM chooses the best| | The model translates
meeting sees [JHTY as match out of the captured data into a
a caption. possibilities. set of English words.

Application Logic

Figure 2.2: SLAM application workflow

We built the frontend with the JavaScript programming language using Node.js
and Express.js frameworks. We used HTML and CSS with the Bootstrap framework
to create a responsive user interface. Responsive user interfaces scale appropriately
depending on the size of the screen. We chose responsive design because Zoom is
used on both desktop and mobile devices with varying size of the screen.

The backend of the application is built using the Python programming language.
The APIs transfer data between the frontend and the backend, using Representa-
tional State Transfer (REST) architectural style [24].

We used SPOTER [1] as our machine-learning model. The SPOTER model takes
in a set of extracted key-points based on a collection of video frames and outputs
a subset of English words that best correspond to the sign detected. The model is
trained on the open-source data set WLASL2000, containing 2000 signs or glosses
[10]. Each gloss is an English translation equivalent to one or two words.
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5.3 SLAM User Interface Framework and Design

The SLAM user interface (frontend) is a component providing users with an intuitive
and user-friendly interactions, as part of the Zoom meeting experience. The SLAM
can be added as a Zoom application and the user can bring up the SLAM window
from the Zoom menu bar when they join a meeting. The frontend’s primary function
is to call the backend of the application, when the user would like to start the
translation of signs into text. The request to start translating is done via a GET
API call to the SLAM backend. After the recognition process is complete in the
backend, the frontend receives the translation data to display. ASL recognition
results are displayed in the SLAM text box, shown in Figure 2.3. Users can edit the
results if necessary, and when they are satisfied with the accuracy, they can press
the send button to share the translation results with other meeting participants.
The frontend also features a stop button, which users can use to terminate the
recognition process. To help users navigate the app, there will be a help link located
on the left top of the frontend that provides answers to Frequently Asked Questions.

(XN} Zoom Meeting

< @ slam CED

P START

SLAM Translation - Edit here!

Figure 2.3: SLAM Application User Interface Design in the Zoom client

5.4 SLAM Backend and Application Programming Inter-
face Design

The backend of the SLAM application exposes an Application Programming Inter-
face (API) that gets called by the user interface, when the user presses the ”start”
button. When the backend receives the GET API call, the logic to capture video
data and translate it begins. The backend uses the web camera to collect video
input for a fixed amount of time, then passes it to the machine learning model,
which returns top translations of a single sign. The length of the recording was
based on the training set of over 20,000 videos, described in the next section. We
chose 3 seconds as the fixed amount of time to record the video because over half
of the training videos were between 2 and 3 seconds in length, with a mean of 2.4
seconds and a median of 2.3 seconds. Figure 2.4 shows the training length frequency
distribution.

12
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Figure 2.4: WLASL2000 video training data set length distribution (seconds)

The machine-learning model takes in extracted key point information from a set
of video frames and generates the translation results as the top 5 most probable
translations. This process enables the backend to handle the complex processing
and manipulation of data, making it possible for the application to deliver near
real-time translations of ASL to English text. The backend is built in the Python
programming language, using OpenCV library to capture and prepare video data
and Google MediaPipe library to extract the key points. Before sending the data
to the machine learning model, backend standardizes the key point data to match
the expected format. Each video frame is cropped such that the person’s face is in
the center and is scaled to 256 by 256 pixels before key points are located in each
frame.

5.5 SPOTER: Real-Time Action Recognition ML Model

The SPOTER model is designed to recognize sign language gestures and translate
them into English text at the word level. The model is based on a transformer
architecture that uses the sign pose data as input to recognize signs. The sign
poses are extracted using a 2D key point detection framework, which captures the
movement of different body parts during a short video of a gesture in American Sign
Language. We used Google MediaPipe library to extract key point data from the
processed video frames. Fach video frame records the location of body joints from
the hands, face, and upper body, as a relative position in the video. Each frame
contains 54 key points, with the majority of the key points located in the hands.
There are 42 key points on both hands, 7 on the body, and 5 on the face. This means
that the SPOTER captures detailed information about the location and shape of
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each finger, while the body posture and facial expressions carry less information.
Figure 2.5 shows the 21 key point locations on one hand.
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Figure 2.5: Extracted key point locations using Google MediaPipe library

Visualizing key points on top of a video frame looks similar to Figure 2.6. If
there’s no person in the video frame or a key point is hidden, we use the value of
0 to represent an absence of key points. The SPOTER model uses extracted joint
coordinates as input to create a feature representation that it then processes in the
transformer layers. The SPOTER model uses a self-attention mechanism, which
allows it to focus on the most important parts of the input data while ignoring
irrelevant information. The model also employs a bidirectional encoder that takes
into account both the past and future sign poses to create a contextual understanding
of the sign language sequence over time [1].

Figure 2.6: SPOTER model key point data extraction example (key points are
shown in gray and green), from Figure 1 in [1]

We trained the SPOTER model on the WLASL2000 data set, which consists of
21,083 videos [10]. Each video represents 1 out of 2000 signs in ASL, performed
by 119 distinct native signers or interpreters. Each sign is performed by at least 3
different signers. The data set was split into training, validation, and testing sets.
The model was trained using a cross-entropy loss function and the Adam optimizer
for 100 epochs. The highest validation accuracy the model achieved is 31.51%.
Since not all signs were recognized with equal accuracy, we discarded the words
that had 0% validation accuracy. We selected a subset of words with a positive
recognition rate for user testing. The total number of signs with non-zero accuracy
was 738. Out of 738 signs, 422 signs had validation accuracy of over 60% and 401
signs had 100% validation accuracy (around 54% signs with non-zero accuracy).
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Figure 2.7 summarizes the SPOTER model validation accuracy results. Using these
model training insights, we selected 10 words to run the first user application tests,
described in the next section.

SPOTER Model Validation Accuracy

Zero accuracy
Non-zero accuracy
Accuracy over 60%

100% accuracy

=

500 1,000 1,500

# of signs

Figure 2.7: SPOTER model trained on WLASL2000 data set validation accuracy
summary

6 ASL User Testing of SLAM in Real World En-

vironments

The next step in the Human-centered Design approach is to test the prototype with
users. We tested SLAM with a user who is fluent in ASL to receive feedback on
the first iteration of the app. When completing the initial user research, the final
question in the survey asked if the participants would like to test the product at a
later time. We received interest in user testing from more than 30 people from the
University of California, Berkeley, community and the ASL club at Berkeley. One
user was able to test the SLAM application in person.

In order to simulate a real-world environment, the participant used SLAM in a
Zoom meeting. SLAM was pre-installed into the Zoom client of the testing laptop
and the user tested the application in a classroom setting. We provided the following
list of 10 words for the participant to test: bird, onion, desk, presentation, lettuce,
comfortable, late, report, computer, and mention. We then had the participant sign
any word they would like. During user testing, the accuracy and latency of the
machine learning model was calculated after each sign was translated. After the
testing was finished, we asked the user for their feedback regarding the app.

6.1 SLAM Team Testing

Each member of the SLAM team tested the prototype in different locations, lighting,
and Zoom virtual backgrounds. All of the locations were in a classroom setting
and had a white background. The lighting varied from the user being back-lit
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to uniformly lit. One team member tested SLAM with a slightly blurred virtual
background. The accuracy of translated words from the set list ranged from 20 -
40% with an average accuracy of 30%. The average latency was 5 seconds after
each sign was translated. The intended word for the user to sign, and the given
translation from SLAM for each user is shown in the Table 2.1 below.

H Word User 1 Translation User 2 Translation User 3 Translation H
bird bird Greece bird
onion hello onion onion
desk desk desk desk

presentation accent lettuce hello
lettuce lettuce stubborn lettuce
comfortable top march early
late dive engage dive
report star go go
computer heaven prevent heaven
mention read hard name

Table 2.1: A given word for the user to sign and the translation output from
SLAM for each team member.

Each team member noticed the latency of 5 seconds. The speed of each sign being
signed also varied across team members which influenced the results. The position,
lighting, and the wearing of masks all influenced the accuracy of the translation as
well. We found that the optimal setting for the user was to have bright lighting, a
plain background, show half of their torso when signing, and wear no masks or face
coverings.

6.2 ASL Survey Participant App Prototype Feedback

We repeated the same structure of testing for the user who is fluent in ASL. The
average accuracy was 20% and the average latency was 5.4 seconds after each sign
was translated. The intended word and given output of translation is shown as well
as the latency of translation for each word in the Table 2.2 below.
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| Word User Translation Latency(s) ||

bird priest 5.23
onion crown 5.3
desk desk 4.9
presentation cabbage 5.27
lettuce lettuce 5.17
comfortable war 5.42
late mature 6.76
report peach 5.55
computer paper 5.66
mention pound 5.16

Table 2.2: A given word for the user who is fluent in ASL to sign, the translation
output from SLAM, and the latency for each sign.

Initially, the user was too close to the computer, so we moved their location so
their torso was shown on the screen. They also signed each sign very quickly as if
they were having a conversation. This affected the accuracy of the translation, so we
asked them to slow down and sign each sign multiple times during each translation.
This allowed the model to recognize some words like "desk” and ”lettuce”.

6.3 SLAM App Redesign Based on Feedback

After the testing of specific words, we asked the user for any suggestions, improve-
ments, or thoughts surrounding SLAM. Despite the average accuracy being 20%
, the user expressed gratitude for the creation of this app. They also mentioned
that ASL is difficult to discern in person, so they understood why the app would
think ”like” is "white”. Inserting context into the machine-learning model would
increase the accuracy of SLAM to translate many other similar looking words such
as "Montana” and "museum”.

Based on the user feedback, the following design changes would be beneficial in
the next iteration of SLAM. The translation should be continuous so the user has
to press the ”start” button at the beginning of the meeting once. Additionally, the
passing of data through API’s causes a long latency for translation. To minimize
the latency, there should be a restructuring of the API’s connecting frontend to the
backend. In order to combat the lack of context the model can discern, the new
frontend can display the top two or three options for similar looking words. This
allows for the user to choose which word they meant and have a more accurate
translation.
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7 Future Improvements to SLAM: Model and Func-
tionalities

The SLAM app prototype is a successful first demonstration of automatic ASL
to English translator using an existing virtual meetings platform. However, the
technology has limitations. The biggest limitations are the available vocabulary and
accuracy of translation. We envision that in the future, the app can be improved in
a number of ways. The goal of the project was to build a prototype and as such, the
SLAM app is complete. The shortcomings of the existing prototype come from both
the technological aspect of the machine learning model and from limits imposed by
the choice of distribution platform. In this study, we considered only people who
would be using SLAM for translating American Sign Language into English. We
envision that in the future, the app can be extended to other sign languages, given
the requisite training data to develop an accurate machine-learning model.

7.1 Addressing Shortcomings of Vocabulary and Accuracy
of the SPOTER Model

The core functionality of SLAM relies on the Sign Pose-based Transformer for word-
level sign language recognition (SPOTER) machine learning model. The largest
open American Sign Language data set, WLASL2000 [10], contains 2,000 signs and
over 20,000 videos. However, having a vocabulary of 2000 is limiting in certain
conversational contexts. For example, discussing a narrow topic that uses uncommon
words would reduce the usefulness of SLAM. More training data is needed in order to
extend the vocabulary of the app. Additionally, sign languages have dialects [25], so
the translation learned by the model may not always correspond to what the signer
intended because of the regional differences in the ASL they’re using. Creating a
larger vocabulary for SLAM exceeding 2,000 signs is essential for a product that can
be used in schools and workplaces. For example, one use-case could be addressed
by collecting and training a model to recognize signs based on a particular topic.

Moreover, the SPOTER model recognizes different signs with varying degree of
accuracy. In order to hold a fluent conversation on any topic, more data is needed
to train the model to be useful for signers in a general conversation. Additional
complexities of recognition arise from language ambiguity, such as different words
that share the same sign. Different regions of the United States have different
dialects of American Sign Language. The accuracy of the translation also depends
on environmental factors such as light settings, camera settings, how far away from
the camera the signer is, and the setting the signer is in, among others. The speed
with which the signer signs is a factor as well. Finally, our prototype sends captured
sign data to the machine learning model at regular intervals. In practice, sign
duration varies considerably from under a second to over 5 seconds. Improving
the mechanism which sends the data for translation would improve the translation
accuracy.

7.2 Extending App Functionalities and Broader Use Cases

With the SLAM prototype complete, there are a number of ways in which the
application can be extended. First, other sign languages can be added such as the
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British Sign Language, the German Sign Language, or any other sign language. The
current challenge is collecting a large data set that enables a degree of translation
accurate enough to hold a conversation. Another idea for future work is to add user-
specific vocabulary, based on repeated use of signs, akin to auto-correct on phones.
This idea can be explored by letting the user provide their data. Extending an app
in this way would require modifying and training the machine learning model to
recognize user-specific signs.

Additionally, extending the ASL data set can improve the SLAM functionality.
For example, collecting data from a diverse group of people of various sex, age,
ethnicity, using solid as well as more realistic backgrounds would help make a real-
world application more accurate in any setting and for any user. The speed with
which the signer signs also influences the translation and training. Collecting data
from people who sign at different speeds would enhance the application functionality.

Finally, since Zoom is one of many virtual meeting platforms, extending the
application to other platform is a possible future work. For example, the same
app can function inside Google Meets, Microsoft Team, or Apple FaceTime. In
the future, including other devices such as mobile phones and tablets would bring
ASL to English translation to people on the go. The prototype of Zoom app makes
it possible to think of other future uses of the real-time ASL translation, such as
self-checkout cashier registers in grocery stores, airport check-in ticket booths, or
drive-through food kiosks.
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SLAM User Persona

Name: Olivia Adams
Tagline: ASL Educator
Demographics:
Age: 22
Gender: Female
Geography: small town in Idaho, USA, now lives in
Berkeley

Short Bio:

Deaf, raised by Deaf parents, raised in an integrated school
because there were not any deaf schools in her home town.
She is a fluent / native ASL signer. She didn’t have many deaf
friends growing up, and she’s making many friends both
hearing and non-hearing at Berkeley.

Occupation: Student at UC Berkeley
Maijor: Special Education
Minor: Biology
Income: part-time dog walker ($500 a month)

Personal characteristics:
e Communicates with her mom several times per week in ASL using FaceTime
e Extraverted, bubbly, and likes to get outside
e Open-minded
e Community leader (works with kids in her neighborhood, teaching ASL classes)

Key Cares & Concerns — Motivations:
e They are Deaf so they would like to support their community
e Part of many social clubs
e They have deaf and non-deaf friends
e Society and culture shift towards online meetings and they are concerned about inclusiveness on
those platforms

Existing solutions they already use:
e Face-to-face and FaceTime, relying on translators and often choose to text instead

Challenges & Pain Points:
e Can’tjoin Zoom meetings unless they hire an in-person translator, which is expensive and time
consuming
Feel excluded in day to day life
Wish more people learned the basics of ASL for simple conversations (classmates, cashiers)
Typing out what they want to say is annoying, slow, not fluid
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