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Figure 1: Drone model flying above the model of the Palace of Fine Arts in Unreal Engine 5

ABSTRACT
Simulating realistic drone flight could be helpful for drone operators

as a training and testing ground. Existing drone simulators such as

Microsoft AirSim don’t have 3D world scenes of any location on

Earth. Our goal is to proof-of-concept that provides a realistic sce-

nario of flying a drone in a complex scene, approximating the real

world. The novelty of our approach is in combining complex envi-

ronment with physics-based realistic simulation and path-planning

in a free game and physics engine, Unreal Engine 5. Specifically, we

focus on 1 realistic scenario. We compared different path-planning

algorithms to select the best flight path. Additionally, we increased

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CS 184/284A, May 2023, UC Berkeley
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the simulation realism by animating collisions or crashes. The final

video shows the drone flying through the 3D world around obsta-

cles through predefined path in space. The video can be seen on

the website: https://irina694.github.io/3d-drone-sim/.
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1 INTRODUCTION
Small Unmanned Aerial Vehicles (UAVs), or drones, have many

applications ranging from search-and-rescue missions, to disaster

responses to cinematography [1], [2]. The usage of drones rose in

popularity due to recent advances in robotics, computer vision, and

artificial intelligence [3]. Every year, drones are getting better at
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navigatingmore complex environments autonomously, and in small

fleets, by communicating with each other [4]. Drones are currently

used for many tasks, such as taking aerial photographs, inspecting

bridges, and documenting warehouse inventory. Simulating drones

can offer an advantage to piloting a real drone. For example, drone

pilots can prepare for a specific mission by learning the route.

Simulations are also less expensive and has a reduced risk. In the

United States, flying a drone in the real world needs to adhere to

the rules of the Federal Aviation Administration [5]. It can also

be hazardous due to environmental factors (i.e., wind, rain, birds,

lightning conditions), and inability of algorithms to land the drone

safely.

In order for simulations to be useful in the real world, the sim-

ulation needs be as realistic as possible. With this goal in mind,

we built a 3D drone flight simulator in Unreal Engine 5 that incor-

porates open-source data from Google Earth. Our application is

a proof-of-concept that any place on Earth could be modeled and

incorporated into the drone simulation given the requisite imagery.

We also compared several drone path-planning algorithms that

could inform the pilot about possible fly routes.

2 BACKGROUND
Historically, plane and space shuttle pilots train on simulators, ap-

proximating the real experience of flying before flying a real plane

or a space shuttle. Similarly, drone simulators are becoming more

ubiquitous as the number of drones and drone pilots increases. With

the advancement of computer graphics, the realism of simulations

is improving as well. There are a number of existing drone and

flight simulators that approximate realistic scenarios, such as drone

swarm simulator in Matlab [6] or a drone flight for nature conser-

vation [7]. There are many open-source and proprietary tools for

different scenarios and types of UAVs [8].

2.1 Previous Works
One widely used simulation tool is the Microsoft AirSim [9]. The

software is open-source and is built in Unreal Engine, like our sim-

ulator. This software was released in 2017 and has developed many

specialized capabilities, such as changing the hardware configu-

ration of the drone. The tool allows the user to experiment with

various machine learning techniques, using computer vision and

reinforcement learning [10]. In addition to simulating flight, the

AirSim tool can simulate autonomous cars.

Existing drone simulators such as Microsoft AirSim don’t come

with scenes based on real-world locations out of the box. Rather

than using existing tool like AirSim, we decided to built our own

tool. Our goal was to provide a proof-of-concept scenario of flying

a drone through a 3D model of a real scene. We decided to build

our own tool because learning AirSim and extending it for our use

case would have been more time-consuming than building a tool

from scratch.

2.2 The Novelty of Our Approach
Our approach to the scene modeling is different than AirSim be-

cause we focus on the realism of both the drone and the scene,

whereas AirSim focuses on various types of drones and reinforce-

ment learning. Our simulation aims to be physically accurate by

using drone rotors approximating how certain types of real drones

are made and the physics of their flight. Potentially, our tool could

be used to plan a flight path of a real drone in any location, given

available data, such as Google Earth satellite images.

3 MODELING REALISTIC ENVIRONMENTS
In order to create a realistic 3D model of an existing place, we ex-

perimented with available tools including Google Maps and Google

Earth Studio. We chose a scene that the drone could potentially be

flown in and that had interesting topographical features, but that

wasn’t available in existing flight simulators. Using Google Maps

to capture a set of 3D images produces a low-resolution model. We

then switched to the Google Earth Studio platform. We chose the

Palace of Fine Arts in San Francisco as our example scene and its

surrounding area. Google Earth Studio allows the user to capture

an aerial video footage by following a specified camera path. We

learned that spiral path doesn’t work because it made it difficult

to reconstruct a 3D model from a changing perspective. The Orbit

type project worked best for our use case.

First, we captured the video from above the palace by slowly

rotating the virtual camera, while keeping the top of the palace

stationary. The total duration was 120 seconds. We then rendered

the video as an MP4 movie file with 3601 frames at 30 fps. Rendered

every 25th movie frame into a PNG image at 100% resolution using

Blender. Second, we uploaded 145 PNG images into Meshroom

open-source photoprogrammetry software to process and extract

the 3D model and produce a dense 3D mesh of the scene. Over-

all, the Meshroom 3D model pipeline includes automatic feature

extraction, which uses dspsift algorithm, image matching, feature

matching, structure from motion, depth map calculation, meshing,

and texturing. Finally, after we created a 3D mesh of the scene with

542,006 elements, we joined all mesh elements in Blender to have

1 object. We then exported the mesh file from Blender as glTF 2.0

into Unreal Engine. Figure 2 shows a screenshot from capturing

data in Google Earth Studio.

Figure 2: The Palace of Fine Arts in Google Earth Studio

4 IMPLEMENTATION IN UNREAL ENGINE 5
We chose Unreal Engine 5 (UE5) because it has a built-in capabilities

to simulate realistic physics, light and shadow effects, and high-

definition graphics. Unreal Engine 5 is a modern open-source game

development engine. We integrated the scene model into the engine

by creating a new level with objects representing the actors in our
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simulation, including the scene and the drone. The programming

language in Unreal Engine is C++. It also comes with a visual editor

with powerful features, where users can drag and drop events and

create custom code that interacts with in-game and level objects.

We used a combination of object-oriented C++ classes and visual-

style Blueprints. Figure 3 shows a Blueprint level-based event graph

we created.

Figure 3: A part of the Blueprint graph we created in UE5

Additionally, UE5 offers comprehensive tutorials for beginners

and includes a marketplace of assets that can be used by developers.

The engine allows for easy API integration and has a less steep

learning curve compared to other physical simulation frameworks.

We discuss the details of our implementation in UE5 in the next

section.

4.1 Drone Model
Using an open-source mesh, we modeled the drone’s physics after

a real-life quadcopter. The drone has 4 rotors attached to each of

its corners, each providing varying thrusting force to the drone,

allowing the drone to move, yaw, and pitch in any direction.

Figure 4: Quadcopter Design

4.2 Drone Controller
The path-planning algorithm passes the desired path as a list of 3d

coordinates to the drone, the drone then goes from one coordinate

to another. While giving delta displacement to the drone tick allows

it to move smoothly, it does not provide an ideal simulation of a

quadcopter, whose movement results solely from its rotors. There-

fore, we implemented the P.I.D controller that provides a physically

accurate controlling mechanism to the drone.

P.I.D. controller is a heuristic widely used in the robotics industry.

Five PID controllers of the drone—three for x, y, and z coordinates,

and two for yaw and pitch—create a feedback loop of errors and

deltas, allowing the drone to smoothly adjust each one of the four

rotors’ thrusting power, approaching its target without human

control.

Each PID controllers require 3 hyper-parameters: P, I, and D,

small changes in one leading to huge differences in the controller’s

reaction to errors. Like real-life drone robotics, fine-tuning PID

controllers involves repetitive trial and error. The drone being in a

physical simulation, however, rendered the process much simpler.

Figure 5: Fine-tuning PID through GUI

The outputs from the PID controllers are then weighted and

passed to the calculation of thrusting power. The calculation goes

as follows:

• X pid X pid is directly related to rear thrusting power, and

inversely related to front thrusting power.

• Y pid Y pid is directly related to front thrusting power, and

inversely related to rear thrusting power.

• Z pid Z pid is directly related to all rotors’ thrusting power.

• Pitch pid Pitch pid is directly related to rear thrusting power,
and inversely related to front thrusting power.

• Yaw pid Yaw pid is directly related to left thrusting power

and inversely related to right thrusting power.

The rationale behind this intuitively makes sense: the drone likes

to tilt forward when the waypoint is far in front, or go upward when

the waypoint is high up. Yaw and pitch PIDs effectively balance the

tilt angle of the drone, providing counterforce to prevent the drone

from over-tilting.
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4.3 Simulating Destruction
To add realism to the simulation, we implemented a failure mode

when the drone crashes into an obstacle. Our implementation ap-

plies mass-based damage to the drone model, using UE5 Chaos

Destruction system. Chaos Destruction system simulates physics-

based object (static or skeletal) mesh destruction based on pre-

defined force applied, which triggers a level of fracture that we can

set: the more force is applied, the more the mesh fractures. This

system allows us to achieve a crash effect upon collision by spawn-

ing a pre-fractured static mesh in place of the drone mesh when

a collision event is detected. We also simulate the force applied to

the drone by the wall/floor that it collides with.

4.4 Camera Perspectives
We used several perspectives to achieve various simulation effects.

One camera follows the drone, implemented as a spring arm. This

camera shows a 3rd person view of the scene. Another camera

sits on top of the drone and shows a 1st person view of the scene,

which offers an immersive view. Additionally, to produce cinematic

collisions, we added a 3rd person character camera, which can be

moved by the user to view the drone from different view points and

perspectives, akin to 1st person games where the camera follows

where the player is looking.

Figure 6: Immersive First-Person View

4.5 Obstacle Detection
We used a simple approach to real-time obstacle detection and

avoidance approach. The drone’s current location is tracked using

its pawn’s location in the game world. The drone controller then

starts searching for obstacles in the vicinity of the drone by checking

for floating boxes that were previously spawned in the game world.

Once an obstacle is detected, the controller calculates the distance

between the obstacle and the drone and determines if the obstacle

is within a predefined range. If the obstacle is within range, the

controller uses the drone’s start and end location to calculate a path

that avoids the obstacle. The new path is then inserted into the

drone’s current navigation plan, allowing the drone to adjust its

course to avoid the obstacle. This approach helps the drone avoid

collisions with obstacles in its path and maintain its trajectory

towards the destination.

5 PATH PLANNING
Path planning is a critical component in autonomous robotic sys-

tems, including drones, that involves determining a feasible and

optimal route from a starting point to a destination while avoid-

ing obstacles. It plays a significant role in drone navigation as it

ensures safe and efficient operation in complex environments. By

employing effective path planning algorithms, drones can navigate

through cluttered spaces, minimize energy consumption, and ac-

complish tasks like aerial photography, package delivery, or search

and rescue operations.

5.1 Interfaces with Map Reading& Drone
Control

• Map Reading:
After getting the map3D.py file, we get a JSON file for the

algorithm input.

• Drone Control: After conducting the path planning Algo-

rithms, we get a list of vectors to control the drone.

5.2 Path Planning Algorithm conducted
• RRT-3D (Rapidly-Exploring Random Trees in 3D):
Probabilistic: The algorithm randomly samples the configu-

ration space to create a tree that explores the environment.

Incremental: The tree is constructed incrementally, one ver-

tex at a time, which allows the algorithm to operate in real-

time for certain applications. Informed exploration: RRT-3D

balances exploration and exploitation by biasing the search

towards unexplored areas, enabling efficient search in high-

dimensional spaces.

• RRTConnect-3D (Rapidly-Exploring Random Trees
Connect in 3D):
Bidirectional search: The algorithm grows two trees, one

from the start and one from the goal, and attempts to connect

them in the middle. Goal-biased sampling: RRTConnect-3D

uses a goal-biased sampling strategy to improve the likeli-

hood of a successful connection between the trees. Faster

convergence: Compared to RRT-3D, RRTConnect-3D often

converges faster to a solution because of its bidirectional

search approach.

• A* (A-star) algorithm:
Heuristic-based search: A* uses a heuristic function to esti-

mate the cost from the current node to the goal, guiding the

search towards the goal more efficiently. Optimal solution:

A* guarantees an optimal solution if the heuristic function

is admissible (never overestimates the true cost) and consis-

tent (satisfies the triangle inequality). Complete search: A*

is a complete search algorithm, meaning that if there is a

solution, it will find it.

• Bidirectional A* algorithm:
Simultaneous search: Bidirectional A* simultaneously searches

from the start and goal nodes, expanding nodes in both direc-

tions. Faster than unidirectional A*: This algorithm typically

finds a solution faster than the unidirectional A* algorithm

because it explores less of the search space. Optimal solution:

Like A*, Bidirectional A* also guarantees an optimal solution

if the heuristic function is admissible and consistent.
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[RRT_3D] [biodirectional AStar]

[AStar] [RRTConnect3D]

5.3 Path Smoothing
Path smoothing is a post-processing technique applied to the output

of a path planning algorithm to reduce the number of waypoints

and improve the overall quality of the path. Oneway to achieve path

smoothing is by adjusting the step size during the path generation

process.

Here is our approach to path smoothing using variable step size:

• Start with an initial path: Generate a path using your pre-

ferred path planning algorithm. This path might contain

many waypoints and sharp turns.

• Define a maximum step size: Determine the maximum dis-

tance allowed between consecutivewaypoints in the smoothed

path. This step size should be large enough to reduce the

number of waypoints, but small enough to maintain the

required accuracy and avoid collisions with obstacles.

• Initialize the smoothed path: Create an empty list to store

the waypoints of the smoothed path. Add the first waypoint

of the initial path to the smoothed path.

• Iterate through the initial path: For each consecutive pair of

waypoints (A and B) in the initial path, perform the following

steps:

a. Calculate the distance between the current waypoint (A)

and the next waypoint (B). If the distance is less than or equal

to the maximum step size, add waypoint B to the smoothed

path.

b. If the distance between waypoints A and B is greater than

the maximum step size, calculate the number of intermediate

waypoints required to maintain the desired step size between

waypoints. For instance, if the distance between A and B is

1.5 times the maximum step size, you’ll need to insert one

additional waypoint between A and B.

c. Generate intermediate waypoints by interpolating be-

tween A and B, using linear interpolation or amore advanced

method like cubic splines, depending on the desired smooth-

ness. Add the intermediate waypoints to the smoothed path.

• Add the final waypoint: Once reached the end of the initial

path, add the last waypoint to the smoothed path.

We successfully achieved the goal of path-smoothing by adjust-

ing the step size smaller around 2.7(previously 0.5), which reaches

the best balance for drone control as well as a smoother path due

to the negative effect small step size has on drone control.
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5.4 Comparison between algorithms
We selected the RRTConnect-3D algorithm for path planning due

to several advantages. First, compared to RRT-3D, RRTConnect-

3D exhibits faster convergence, making it possible to identify vi-

able paths more quickly. Second, because its trees grow more pur-

posefully toward one another, RRTConnect-3D typically produces

smoother paths than RRT-3D, leading to better path quality. Third,

RRTConnect-3D can adapt to complicated environments and can

handle a variety of project requirements and circumstances since

it is scalable and well-suited for high-dimensional spaces. Finally,

RRTConnect-3D outperforms A* and bidirectional A* in complex

scenarios in terms of computation time, striking a balance be-

tween computational efficiency and path quality. Overall, using

RRTConnect-3D gave us a path-planning solution for our drone in

challenging conditions that was successful and efficient.

6 LIMITATIONS
The simulation as a proof-of-concept is complete. However, there

are technical limitations to this work. The biggest challenges we en-

countered were the integration between Unreal Engine and Python

used for path planning. AlthoughUE5 offers an experimental Python

API, the feature is not production ready and documentation was

sparse. Additionally, since UE5 has many built-in capabilities, learn-

ing how to use its functionalities was challenging due to the amount

of available options. Finally, the way we encode a complex scene

into our program can be improved.

7 FUTUREWORKS
In the future, we would like to improve the integration of the

components such as comparing different path planning algorithms

visually in Unreal Engine. We could also improve the resolution of

the scene model by getting higher resolution images. One way to

accomplish a higher resolution scene mesh would be to take videos

from different angles (closer and further away), to supplement the

original video recording. Having more views of the same scene

could make the model into a denser 3D mesh. Finally, improving

the way collisions are detected is a possible future work that we

didn’t have time to explore in this prototype.

8 CONCLUSION
Creating drone simulation for various fields is important and we

leveraged Unreal Engine 5 for implementing computer graphics

concepts in a realistic simulation. Search-based algorithms for path

planning in 3D space have potential applications in drone naviga-

tion and robotics. We showed comparison between multiple search-

based algorithms in a 3D environment. A web version of this report

with videos can be found on: https://irina694.github.io/3d-drone-

sim/.

ONLINE RESOURCES
Blender v3.5, Google Earth Studio v1.7, Meshroom v2023.1.0, Un-

real Engine v5.1.1 with UnrealImGui plugin v1.22 and Python API,

Visual Studio 2022.

Search-based 3D algorithmsGitHub library: https://github.com/zhm-

real/PathPlanning/tree/master/Search𝑏𝑎𝑠𝑒𝑑𝑃 𝑙𝑎𝑛𝑛𝑖𝑛𝑔/𝑆𝑒𝑎𝑟𝑐ℎ3𝐷 .
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